First Light of AquEYE

This report covers the activity carried out from the 20th to the 28th of June 2007, at the 182cm telescope of Asiago Cima Ekar by a team composed by Claudia Facchinetti, Enrico Giro, Giampiero Naletto, Tommaso Occhipinti, Enrico Verroi, Paolo Zoccarato. Great technical help was provided by Venerio Chiomento, Gigi Lessio and Luciano Traverso. Wojciech Makowiecki (a guest from Krakow University, Poland) put its informatics skill at our disposal for several conversions from Linux to Windows and viceversa.

After calibration in the optical laboratory, Aqueye was brought to the 182cm of Cima Ekar the 20th of June, 2007. It was mounted on the AFOSC spectrograph (still on the floor), and its entrance pinhole (3 arcsec diameter) aligned with the optical axis by using the AFOSC CCD camera as intermediate reference (see Figure 1).

Finally, AFOSC + AquEYE were mounted at the telescope (see Figure 2). It was a surprisingly easy operation.

Figure 1 - Left: Giampiero Naletto, Gigi Lessio and Enrico Verroi ponder on the situation. Right: Enrico Giro kisses goodbye to his beloved exit lens of AFOSC.

Figure 2 - AFOSC + AquEYE mounted at the telescope.
As with any other instrument we built, at least one mistake had to be done: AquEYE was supposed to be mounted at 45° from the orientation seen in Figure 2! The correct orientation had been determined both for mechanical reasons of clearance below the main mirror cell and for optical (and more important) considerations: at 45°, the spiders of the secondary mirror support would nicely be aligned with the edges of the inner pyramid. It was decided not to correct that mistake in this occasion, due to the essentially engineering nature of the run (the telescope itself was in the course of a major overhauling of the control system). The following night (summer solstice!) the first stars were acquired see (Figure 3, Figure 4).

![Image](Figure 3- Claudia Facchinetti and Tommaso Occhipinti driving the acquisitions through hanging cables.)

![Image](Figure 4 - The stream of photons form an unknown star. The arrival time of each photon in each of the 4 channels (here numbered 1,3,5,7 for reasons that only Claudia and Tommaso could explain) is time tagged by the internal clock, whose ticks happen every 25 (±1.1) picoseconds. Claudia and Tommaso did a great job of disentangling the time roll-overs due to the limited number of bits available for tagging inside the CAEN board.)

Tests and observations resumed from the 26th to the 28th, with the telescope still not fully operational, and thanks to Venerio Chiomento and Luciano Traverso, two most skilled night assistants who substituted a pletora of still missing software instructions and circuitry with their magic fingers. There was enough time to make the system much more professional, with all
electronics attached to the telescope and computers moved to the control room via a 20-m long fiber (Figure 5).

Figure 5 - Tommaso Occhipinti and Wojciech Makowiecki in the control room cleaning residual bugs.

The weather was not certainly not cooperative, but we had several holes between clouds that allowed to observe 5th mag stars, the variables AM Her (found in a very low state), SS Cyg and the night sky (well seen above the dark counts, see Figure 6, Figure 7, Figure 8).

Figure 6 - A short string (0.2 s) of counts from SS Cyg. In this figure, the counts have been binned over 280 microseconds.
Figure 7 - The sum of the 4 channels, again binned over 280 microseconds.

Figure 8 - The cross-correlation of channel 1 against channel 2.

Few engineering considerations are warranted here.
The system performed flawlessly, enduring temperatures as low as 4 °C (amazing indeed for the 26th of June!) and humidity as high as 90%.
Saturation in each channel happened around 1 MHz count rates, but ways to raise it were promptly identified. Today, after some improvement to the software, each channel can count to up 4 MHz. At the lower end, dark is well below the night sky, but some more adjustment can still be made.

What's next in preparation for the August 9 to 14 run?
AquEYE is back in the optical laboratory for 45° rotation and further alignment.
One of the 4 SPADs, showing a higher dark count rate, will be substituted with a new one kindly provided by MPD.
A high precision Rubidium external clock is being characterized in Cagliari. The Cima Ekar site has been surveyed to determine the best position of a GPS antenna. We then expect to have soon a first class UTC timing system.
Astronomer-friendly software is being written.
So, wait for more!

Acknowledgment

The hardware here described has been largely financed by a grand from the University of Padova. The work on 'Astronomy to the Quantum Limits' is further financed by the GALILEO Navigation System through the HARRISON program, and by the Ministry of University and research through PRIN 2006.

References

AquEYE has been described in several places, see for instance:
